Wednesday, March 12, 2014

Propagator for the free particle

As an exercise, I'd like to write up something that I agonized over for 48 hours -- the propagator for a free particle in Quantum mechanics.

We begin with the following function, which I will call $U$.

\begin{eqnarray}
U &=& \langle x_f, t_f \vert x_i, t_i \rangle \\
&=& \int dx_1 dx_2 \dots dx_{n-1}dx_n  \langle x_1, t_1 \vert e^{\frac{-i\hat{H}\tau}{\hbar}}\vert x_2, t_2 \rangle  \langle x_2, t_2 \vert e^{\frac{-i\hat{H}\tau}{\hbar}}\vert x_3, t_3 \rangle \cdots  \langle x_{n-1}, t_{n-1} \vert e^{\frac{-i\hat{H}\tau}{\hbar}}\vert x_n, t_n \rangle
\end{eqnarray}

$U$ has a peculiar property, because if we take the inner product of our final state with any wavefunction $\vert \psi \rangle$, we find

\begin{eqnarray}
\langle x_f,t_f \vert \psi \rangle &=&  \int \langle x_f, t_f \vert x_i, t_i \rangle \langle x_i, t_i \vert \psi \rangle dx_i \\
&=&  \int U \langle x_i, t_i \vert \psi \rangle dx_i \\
\psi_f &=& \int U \psi_i dx_i
\end{eqnarray}

Our function $U$ acts like a Green's function on our initial state, $\psi_i$. In the integral above, we have partitioned the transition between states into $n$ steps, propagating forward in time with the operator $e^{\frac{-i \hat{H}\tau}{\hbar}}$

If we examine a single transition between the $x_{j+1}$ state and the $x_j$, we find that we can represent our wave functions in terms of their fourier transforms, or in terms of the momentum eigenbasis:

\begin{eqnarray}
\vert x \rangle &=& \int \vert p \rangle \langle p \vert x \rangle \\
&=& \int \frac{1}{\sqrt{2\pi \hbar}}e^{ipx/\hbar} \phi(p) dp \\
\Rightarrow && \frac{1}{\sqrt{2\pi \hbar}}e^{ipx/\hbar} =  \langle p \vert x \rangle \\
&& \frac{1}{\sqrt{-2\pi \hbar}}e^{ipx/\hbar} =  \langle x \vert p \rangle
\end{eqnarray}

So rewriting our integral in terms of these bases,

\begin{eqnarray}
\langle x_{j+1} \vert e^{\frac{-i}{\hbar}\hat{H}\tau} \vert x_j \rangle &=& \int  \langle x_{j+1} \vert q \rangle \langle q \vert e^{\frac{i}{\hbar}\hat{H}\tau}  \vert p \rangle \langle p \vert x_j \rangle dp dq \\
&=& \int  \frac{e^{\frac{-iqx_{j+1}}{\hbar}}}{\sqrt{2\pi \hbar}} \langle q \vert e^{\frac{-i}{\hbar}\hat{H}\tau}  \vert p \rangle \langle p \vert x_j \rangle dp dq \\
&=& \int  \frac{e^{\frac{-iqx_{j+1}}{\hbar}}}{\sqrt{2\pi \hbar}} \langle q \vert e^{\frac{-i}{\hbar}\hat{H}\tau} \vert p \rangle \frac{e^{\frac{ipx_{j}}{\hbar}}}{\sqrt{2\pi \hbar}} dp dq \\
&=& \int  \frac{e^{\frac{-iqx_{j+1}}{\hbar}}}{\sqrt{2\pi \hbar}} \langle q \vert \left( 1 - \frac{i}{\hbar}\frac{p^2}{2m}\tau-iV(x)/ \hbar +\dots \right) \vert p \rangle \frac{e^{\frac{ipx_{j}}{\hbar}}}{\sqrt{2\pi \hbar}} dp dq \\
&=& \int  \frac{e^{\frac{-iqx_{j+1}}{\hbar}}}{\sqrt{2\pi \hbar}} \left( 1 - \frac{i}{\hbar}\frac{p^2}{2m}\tau-iV(x)/ \hbar\tau + \dots \right)  \frac{e^{\frac{ipx_{j}}{\hbar}}}{\sqrt{2\pi \hbar}}\delta(p-q) dp dq \\
&=& \int  \frac{e^{\frac{-ip(x_{j+1}-x_j)}{\hbar}}}{2\pi \hbar} \left( e^{\frac{-i}{\hbar}\frac{p^2}{2m}\tau-iV(x)/ \hbar}\tau \right)  dp \\
&=& \int  \frac{e^{\frac{-ip(x_{j+1}-x_j)}{\hbar}}}{2\pi \hbar}  e^{\frac{-i}{\hbar}\frac{p^2}{2m}\tau}dp e^{-iV(x)\tau/ \hbar}
\end{eqnarray}
We recognize the integral over $p$ to be a Gaussian integral, or the fourier transform of a Gaussian.  The result is

\begin{eqnarray}
\langle x_{j+1} \vert e^{\frac{-i}{\hbar}\hat{H}\tau} \vert x_j \rangle &=& \sqrt{\frac{-im}{2 \pi \hbar \tau}} e^{\frac{i}{\hbar}\left(\frac{m}{2 \tau}(x_{j+1}-x_j)^2-V(x)\tau \right)}
\end{eqnarray}

Multiplying all of our transition amplitudes and integrating over the various possible $x_j$ variables, we find the Path integral formulation of Quantum Mechanics!

\begin{eqnarray}
U &=& \left(\frac{-im}{2 \pi \hbar \tau}\right)^{N/2} \int \cdots \int \left( \prod_{j=1}^N dx_j \right) e^{\frac{i}{\hbar}\sum_{j=1}^N \left(\frac{m}{2 \tau}(x_{j+1}-x_j)^2-V(x)\tau \right)}
\end{eqnarray}

If we take the limit as $N \to \infty$, then we get our action in the exponential argument, unlike the discrete quantity we currently have,
\begin{eqnarray}
\lim_{N\to \infty} U &=& \lim_{N\to \infty} \left(\frac{-im}{2 \pi \hbar \tau}\right)^{N/2} \int \cdots \int \left( \prod_{j=1}^N dx_j \right) e^{\frac{i}{\hbar} \int L(x,\dot{x},t) dt}
\end{eqnarray}

(I think what I have called $U$ is in fact the propagator. I also seem to be off by a negative sign in our normalization factor -- the factor $-im$ should be $im$.)

For a free particle, $V(x)=0$ and so we have for our inner product:

\begin{eqnarray}
U &=& \left(\frac{-im}{2 \pi \hbar \tau}\right)^{N/2} \int \cdots \int \left( \prod_{j=1}^N dx_j \right) e^{\frac{i}{\hbar}\sum_{j=1}^N \left(\frac{m}{2 \tau}(x_{j+1}-x_j)^2\right)}
\end{eqnarray}

Examining the first few terms of this nasty integral, we see that we have

\begin{eqnarray}
\int dx_1 e^{\frac{mi}{2\hbar \tau}\left(x_0^2 - 2x_0x_1+ x_1^2 -2x_1x_2 + 2x_2^2 -2x_2x_3+ \dots x_n^2\right)}
\end{eqnarray}

Integrating over each successive $x_{n-1}$ yields

\begin{eqnarray}
\sqrt{\frac{2\pi \hbar \tau}{-im(n-1)}}^{n-1}e^{\frac{-im}{2\hbar (n-1)\tau}\left(x_{n}-x_0\right)^2}
\end{eqnarray}

Notice that the factor next to our Gaussian like function is the perfect inverse of our normalization factor for the path integral earlier! (along with a factor of $n-1$, which will create our total time interval, $T=n\tau$ as you'll see in a minute.) So our final expression for $U$ becomes

\begin{eqnarray}
U =  \langle x_f, t_f \vert x_i, t_i \rangle &=& \sqrt{\frac{2\pi \hbar }{-imT}}\mathrm{exp}\left[\frac{-im}{2\hbar T}\left(x_f-x_0\right)^2 \right]
\end{eqnarray}

So this expression gives the probability of transitioning from one state $\vert x_0, t_0 \rangle$ to another $\langle x_f, t_f \vert$. This expression is Gaussian, although I don't know what the complex phase means in the exponential argument. It is certainly normalized, since we are multiplying by $\sqrt{2\pi/\sigma^2}$ ...

Monday, March 10, 2014

Cosmology: Adiabatic Expansion of a Gas

For a quick reminder, an adiabatic process is one where there is no heat exchange between a system and its surroundings. This happens either because the process happens so quickly that the system "has no chance" to exchange heat, or the system is thermally insulated. Taking a look at the first law of thermodynamics for a gas,

\begin{eqnarray}
dU &=& dQ + dW \\
dU &=& -pdV
\end{eqnarray}

For an expanding universe, we can write the energy of our gas as being proportional to volume, which is proportional to the scale factor, cubed:

\begin{eqnarray}
d(\rho a^3) &=& -p d(a^3)
\end{eqnarray}

Putting in our equation of state $p=w \rho$, we find

\begin{eqnarray}
d(\rho a^3) &=& -w \rho d(a^3)\\
d\rho a^3 + \rho d(a^3) &=& -w \rho d(a^3)\\
d\rho a^3 &=& -(w+1) \rho d(a^3)\\
\frac{d\rho}{\rho} &=& \frac{d(a^3)}{a^3}
\end{eqnarray}

Integrating both sides, we get

\begin{eqnarray}
\rho &=& \rho_0 a^{-3(w+1)}
\end{eqnarray}

Self-Fourier Transforms

Just spent a long, long time working with the quantum harmonic oscillator, with the equation of motion -- Schrodinger's time-independent equation:

\begin{eqnarray}
-\frac{\hbar^2}{2m}\nabla^2 \psi + \frac{m \omega^2 x^2}{2}\psi &=& E\psi
\end{eqnarray}

Typical ways to solve this involve power series or algebraic factoring of the equation of motion, but I was trying to formulate the problem as either a Sturm-Liouville differential equation or as an invertible equation of motion with well-defined Green's function.

From the Green's function perspective, we find that this equation under Fourier transform yields

\begin{eqnarray}
-\frac{\hbar^2}{2m}k^2 \overline{\psi} + \frac{m \omega^2}{2}\nabla_k^2 \overline{\psi} &=& E\overline{\psi}
\end{eqnarray}

Which leads to problems in defining $G(k)$, due to the derivative on the left hand side, but has the exact same structure -- aside from coefficients -- as the EOM in x-space. The equations of motion is "self-fourier" and so we might expect the solution $\psi$ to be self-fourier as well.

Well known self-fourier functions are a Gaussian and a dirac comb, but I came upon this interesting article that pointed out if one uses an even superposition of a function $g$ and it's transform $\overline{g}$, that superposition will be self-fourier. For example

\begin{eqnarray}
f &=& g(x) + g(-x) +  \overline{g(x)} + \overline{g(-x)} \\
\overline{f} &=&  \overline{g(k)} + \overline{g(-k)}+g(k) + g(-k)
\end{eqnarray}

Candidates would be

\begin{eqnarray}
f &=& 1 + \delta(x) \\
f &=& \Pi(x) + Sinc(x) \\
f &=& \Lambda (x) + Sinc(x)^2 \\
f &=& e^{|x|}+ \frac{1}{1+4\pi^2x^2}
\end{eqnarray}

Pretty cool, right? And the only sensible of these Self-fourier functions, in the context of our harmonic oscillator is the Gaussian.

There is a way to transform our equation of motion into a simple Sturm-Liouville, but it still escapes me...